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Abstract

This paper presents a novel approach in the framework of heterogeneous combinatorial catalysis, which integrates into the global discovery
strategy the use of inexpensive high-throughput characterization of libraries of catalysts, as multivariate spectral descriptors for catalytic
quantitative structure/property relationship (QSPR) modeling. Moreover, QSPR models can be used to assist the design of new libraries and
for extraction of rules and relationships, yielding knowledge about catalysis. This approach can be of special interest when experimental
evaluation of catalytic behavior is very expensive or time-consuming, as, for instance, for catalyst deactivation studies, for testing under
very severe conditions, or when high amounts of catalyst are demanded. This methodology has been applied to modeling of the behavior of
epoxidation catalysts, with the composition vector of the starting synthesis gel and XRD spectra as descriptors. Dimensional reduction was
conducted by principal components analysis, clustering, and Kohonen networks, and predictive models were obtained with the use of logistic
equations, artificial neural networks, and decision tree techniques. The use of spectral descriptors made it possible to markedly improve the
prediction performance obtained with synthesis descriptors alone.
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1. Introduction HT experimentation in drug discovery and medical chem-
istry is a widely applied and mature approach from which
combinatorial catalysis has taken and adapted most of its
experimental and software tools. However, the proper de-
scription of solid extended catalysts and the ab initio calcu-
lation[1] of their properties are very complex and are still in
their infancy[2,3], especially when compared with the avail-
able chemoinformatics software suites for virtual screen-

In the field of heterogeneous catalysis, new experimen-
tal tools are available for high-throughput (HT) materials
synthesis, catalytic testing, and physicochemical character-
ization. Such tools make it possible to study simultaneously
a large number of variables, like multicomponent catalyst

formulation, synthesis procedure, activation conditions, etc. £ d did lecul lecular d _

Furthermore, HT experimentation or so-called combinator- Ing ot drug cand ate mo ecu ¢4—6]. Mo ecular descrip-

ial catalysis has become an accepted approach to new catlors used in the pharmaceutical chemistry are variables that

alytic material discovery and development. This approach represent the physiochemical properties of a cla_ss of com-

requires the utilization of complex library design strategies, poun(.js[7—9], ahd 'they are commonly clas§|f|ed Into fgur

new data mining techniques, and database technology. types: (a) constitutional (molecular formula); (b) topological
(molecule connectivity matrix); (c) geometrical (3D molec-

ular models); and (d) quantum chemical properties: (semi-
* Corresponding author. Fax: +34 96 387 7809. empirical or ab initio calculations). In recent ye§t§-12]
E-mail address: acorma@itq.upv.egA. Corma). a complete descriptor database has been developed for solid
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Fig. 1. General concept of QSPR predictive models in catalysis science.

catalysts based on molecular descriptors. Nevertheless, the Up to now, in the field of heterogeneous catalysis only
use of fundamental descriptors is very limited, since hetero- the development of new HT techniques has been reported;
geneous catalysts are complex systems, with heterogeneouno reports on data analysis and the ulterior integration in the
multicomponent active sites and unpredictable metastablewhole combinatorial loop or global discovery strategy have
structures. In some cases, the tabulated information corre-been published. The available HT characterization tech-
sponding to the starting elements/oxides making up the cat-niques for solid catalysts include XRD systej#8], acidity
alyst can be of help, as was interestingly shdi, 14] for determination by TPD-NKl [23] and IR-pyridine adsorp-
the catalytic oxidation of propylene with oxygen. The au- tjon [24], parallel TAP reactor studigg5], and photolumi-
thors found that of the more than 3000 tabulated attributes nescence{ZG]_ Converse|y' data mining has been success-
of the catalyst, just six of them could be correlated with fy|ly applied in this field for the analysis and extraction of
certain significance with the experimental performance of ,tifactor relationships (QSPR), with the use of different
the final solid catalyst (e.g.,_the Pauling electron_egativity modeling techniquefL3,27] like artificial neural networks,

of a_II of the metals and semimetals or the norma_llzed for- gecision trees, principal components regression, etc. This
mation free enthalpy of the most stable metal oxide of all gyiracted knowledge can subsequently be integrated into li-
the elements in the catalyst). Predictive modeling was con- brary design tool§28-31] making it possible to reduce the

ducted with lthe usekof neurarll nEtworks e}nd clzijss;]ﬂcatlo; Iexperimental effort needed to reach a convergence criterion.
trees. Neural networks gave the best results, and the model "\ 1 ron0se here a novel approach in the framework

output corrﬁsp?dnded totttrr:etctlats;sloz c(;:ltalytlc l;)_ehaworl. deOW'fof heterogeneous combinatorial catalysis, which integrates
Evfr’ orr]1|e 3vhoun iprefC ¢ 6]: i u ?ti protpler Ites v;/:u N r?to into the global discovery strated®2] the use of inexpen-
€p only when an efiect ot one ot the catalysSt components oo Wt characterization of libraries of catalysts, as multi-

is predominant. . . L .
i . . . variate spectral descriptors for predictive modeling of the
Another interesting approach in the field of polymer . .
science is fingerprint technology and high-output screen- catalytic behavior. Indeed, spectral data can be used to-
gether with synthesis and theoretical data as input descrip-

ing [15]. In this case, the use of molecular descriptors is . o .
also very limited, since a final polymer does not possess anFOrs for catalytic QSPR modeling-ig. 1). As summarized

exact chemical formula or structure, and it is better charac- " Fig. 2 sp_ectral descriptors can be_ ob_tained automatically
terized by its average properties, polymerization conditions, by processing of the raw characterization data. The QSPR

and ingredients. Novel fingerprint technology makes use of M0dél obtained by different data-mining techniques can be
fast, nondestructive, and inexpensive spectroscopy measuredSed (i) as a predictive model, assisting the DoE of new
ments combined with data mining tools to reduce the need catalyst libraries; and (i) for extraction of rules and relation-
for extensive and tedious polymer testing for rheological ShiPsbetweenthe different variables, and gaining knowledge
and long-term mechanical properties. Therefore, HT charac-about catalysis.

terization of a well-defined model polymers library is used ~ AS @ proof of this principle, we have applied these con-
for the rapid establishment of quantitative structure/property C€Pts to a specific case, using experimental data obtained
relationships (QSPRs) by multivariate analyses. Different With HT tools, following an evolutionary strategy. First, dif-
characterization techniqués6—18] have been applied for ~ ferent unsupervised methods for dimension reduction of the
fingerprint polymer and QSPR modeling, such as X-ray raw spectral HT characterization data, clustering algorithms,
fluorescenc§l 9], fluorescence spectroscof@p], and ATR- principal component analysis and Kohonen neural networks,
FTIR spectroscopy21], which allow for the rapid analysis  are used to obtain a series of experimental spectral descrip-
of powders and polymeric solids without the need for sample tors. Subsequently, the construction of predictive models for
preparation, whereas the data mining tools included princi- the catalytic activity with the use of synthesis and character-
pal component analysis, multivariate partial least squares, orization descriptors is studied, by the application of different
decision trees. modeling techniques. The influence of the dimensionality re-



A. Corma et al. / Journal of Catalysis 232 (2005) 335-341 337

Dimension Reduction
Unsupervised Interpretation

/

Data Mining Modeling

A priori Algorithms Synthesis
Decision Trees Descriptors
Principal Component Regression
Logistic Regression Equations
Artificial Neural Networks Catalytic
Testing Data

Clustering Analysis

Principal Component Analysis

Kohonen Network Mapping
Image Analysis

Spectral
Descriptors

Raw Spectral Data |

Catalyst Library Characterization ¢ ¢
QSPR Rules &
Predictive Models Relationships

In sifico
Catalyst Evaluation

Knowledge,
Science

Fig. 2. Workflow of processing of characterization data and the further mining treatment together with synthesis and testing data, aiming td8btain QS
models and to extract fundamental knowledge.

duction approach on the final prediction performance will be with a PW3050 goniometer, with the use of Cy-Kadiation
also examined. and a multisample handler.

The experimental data employed here can therefore be
divided into three groups: (i) compositional synthesis data:
[TMA], [CTMA], [OH], and [Ti] concentrations; (ii) XRD
measurements; and (iii) catalytic performances, that is,

_ ~ epoxide yield, which was classified into five classes, from
Experimental data were drawn from the HT optimization “yery bad” to “very good” yields.

of epoxidation catalysts based on mesoporous titanium sil-

icate material§33]. In that work, the experimental design

was determined by a hybrid optimizer comprising a genetic 3. Unsupervised analysis of XRD patterns:
algorithm assisted by an ANRBO] and experimental data  gimensionality reduction

corresponding to the three evolved catalyst generations. The

object was to determine the yield of cyclohexene epoxide  xRp characterization data consist of arrays of more than
for optimal material synthesis parameters, that is, the molar 539 gata, which could hardly be processed by correlation
concentrations of the components of starting gel. The distri- methods when they were used directly as input variables for
bution of materials in the explored space is complex, becausepredictive modeling (QSPR). For this reason and for reduc-
of the evolutionary design strategy applied. tion of experimental noise, a previous dimension reduction
Apart from the optimization process, HT characteriza- of the abundant raw data is required. In the present case,
tion was carried out to gain a fundamental understanding XRD data are analyzed and projected to a discrete number of
of the catalysis of the process. Therefore, X-ray diffraction dimensions (from 1D, 2D to 5D) with different data-mining
analyses were available for most of the screened Ti'S”icatetechniques: (|) C|ustering ana|ysis usiKgmeans and two-
materials (extracted and sylilated). Although the interpreta- step algorithms; (i) principal component analysis (PCA);
tion of these data for mesoporous materials is not obvious, and (jii) Kohonen neural networks. Furthermore, these data
low-angle XRD spectra (1-862 give information about  would be used as multivariate spectral descriptors for cat-
the long-distance order of the materials, that is, the type of alytic activity modeling.
“crystallographic system,” dimensions of the pores, and par-  In the present approach, instead of applying direct hu-
ticle size. Consequently, it is expected that XRD data could man interpretation of the XRD spectral data, we decided
be correlated with the final catalytic activity of the material. to employ unsupervised analysis techniques because of the
Concretely, XRD measurements showed that from a crystal- convenience of automating the processing of high amounts
lographic point of view, three types of materials are occur- of data and in order to avoid the subjectivity introduced by
ring in the explored multivariate space, that is, MCM-41 and human interpretation.
MCM-48 with different degrees of structural order, and low- PCA is a widely applied statistical methodolof@#] that
ordered materials. X-ray powder measurements were per-allows the dimensionality of information space to be reduced
formed with a Philips X’Pert MPD diffractometer equipped with a minimum loss of information. This method is based

2. Experimental
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Fig. 3. PXRD measurement data of epoxidation catalysts ordered considering the cluster distribution obtained by Two-Step algorithm.

on the fact that input variables (raw descriptors) are closely ping, obtained by Kohonen network training, of the samples
correlated; then itis possible to find a set of new uncorrelated classified according to the cluster distribution obtained by
variables (descriptors callg@incipal components). There- the two-step algorithm. As for the PCA projection, it can
fore, principal components are essentially a linear combina- also be observed that clusters found with the two-step algo-
tion of the original descriptors. On the other hand, cluster- rithm are clearly recognizable within the Kohonen mapping
ing [35] can be considered the most important unsupervised (2D projection).
learning methods, which find a structure in a collection of ~ These unsupervised techniques can successfully organize
unlabeled data by organizing them into groupsclusters and classify the spectral XRD dataset, reducing the data di-
according to their similarity. Finally, the objective of a Ko- mensionality of the redundant raw data. The next step is to
honen network36-38]is to map input vectors (patterns) of ~study the suitability of these multivariate spectral descriptors
arbitrary dimensionV onto a discrete map with one or two for predictive modeling, used alone or in combination with
dimensions. Samples close to one another in the input spacéynthesis descriptors.
should be close to one another in the map Kohonen (topo-
logically order). A Kohonen network is composed of a grid
of output units anadV input units. The input pattern isfed to 4. Construction of predictive models with the use of
each output unit. synthesis and multivariate spectral descriptors

Fig. 3 shows the complete spectral data ordered accord-
ing to which of the different clusters generated by a two-step  pata-mining techniques make it possible to discover hid-
clustering algorithm they belong to. The five clusters found den patterns or relationships among large amounts of data
can be somewhat correlated with knowledge-based observawith multidimensional structurg89,40} On the basis of this
tions; that is, the clusters correspond to low-ordered MCM- knowledge extracted from experimental or ab initio com-
41, medium-ordered MCM-41, MCM-48, and high-ordered puted descriptors, data-mining techniques have made it pos-
MCM-41.Fig. 4shows the cluster distribution obtained with  sible to construct predictive models (QSPRY,29]in the
K -means and two-step clustering algorithms, when the prin- field of heterogeneous catalysis. Among the different mod-
cipal components obtained by PCA computation and the eling techniques, we can draw attention to decision trees
Kohonen map (16« 7) are plotted as coordinates. Cluster- (DT) [41], logistic regression equations (LRE2], artifi-
ing analyses were performed with these two clustering al- cial neural networks (ANN[43], the support vector machine
gorithms, with a minimum of 5 and 10 clusters. The results (SVM) algorithm[44], and principal component regression
show that apparently the clusters found by the two-step loga- (PCR)[45]. In this section, we attempt to develop a predic-
rithm are clearly separated from each other, when displayedtive model that relates the catalytic behavior of solid samples
with the PCA projection, and the most appropriate number to synthesis descriptors and/or (structural) XRD spectral de-
of clusters is 5. Furthermor&,igs. £—d presents the map-  scriptors. This model will provide a basis for developing a
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Fig. 4. K-Means and Two-Step clustering analysis represented in the PCA projection (a, b) and in the Kohonen map (c, d) obtained for the classification of
63 catalysts. The corresponding percentage of variance for each principal component (PC#) is 67.4, 12.7, 6.0, 5.4 and 2.4%. Kohonen map tbaéculated wi
network comprising 234 input neurons and 70 output neurons and using exponential learning rate decay.

QSPR, which can be used in discovery programs when HTSLRE model was fitted, with the 263 original attributes used
or combinatorial techniques are applied. as input variables, yielding a poor accuracy (32%).

The influence of the different descriptors on prediction The combination of synthesis and spectral descriptor was
performance was studied with logistic equations as the first studied by LRE modeling with the spectral principal
model, whereas ANN and DT fitting will be done with the components (2 and 5) and the four compositional descrip-
most appropriate descriptorBable 1summarizes the mod-  tors. The model accuracy is higher (73 and 65%) than that
eling results obtained with different catalyst descriptors and obtained with both descriptors sets separately, illustrating
modeling techniques. When only the four synthesis vari- the complementarity of the two data sets. Moreover, the in-
ables were used as catalyst descriptors, the LRE fitted modekroduction of characterization information would also make
showed a prediction accuracy of 65%. Interestingly, when it possible to correct the experimental deviations introduced
only spectral descriptors obtained by PCA were used, the during the synthesis process. Although structural properties
LRE prediction accuracy computed with two and five prin- and synthesis descriptors are correlated, the use of spec-
cipal components was 50 and 55%, respectively. Although tral descriptors improves the modeling of highly nonlinear
there is no direct information concerning elemental compo- spaces. Furthermore, since only a few spectral descriptors
sition or the synthesis procedure, the structural information are applied, such correlation between the two types of de-
contained in XRD data permits some correlation of the cat- scriptor should not have any negative effect on the modeling
alytic activity. When only the Kohonen projections are used process. Conversely, the accuracy is also increased (71%)
as descriptors, the accuracy of the fitted LRE model is 50%, when synthesis and Kohonen descriptors are used, and it is
but this value is increased (67%) when Kohonen and two- significantly increased (88%) when the information of two-
step clustering data are combined as descriptors. To checkstep clustering is added. This model makes it possible to
the convenience of the XRD data dimension reduction, the correctly predict the outcome of most of the samples, and
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Table 1

Modeling results obtained using synthesis and characterization data as catalyst descriptors, processed by PCA, Kohonen networks and Tevax@tep clus
algorithm. The fitted models were logistic regression equations, artificial neural networks and decision trees. All modeling calculationged/enet caing
ClementinéM 6.0.2 application (SPSS Inc.)

Logistic regression equations Neural netwérks D. tred
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£ £ = £ £ £
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Synthesis descriptors Nr. 4 0 0 0 0 0 4 4 4 4 4 0 0 o b agrc 4 4
Catalyst descriptors Nr. 4 234 4 5 2 3 6 9 6 7 4 5 2 3 7 4 4 7

Very bad 4 10 2 5 3 4 4 4 4 4 0 0 2 7 2 5 4 4 4
Bad 2 2 2 2 3 4 2 2 2 2 0 0 0 0 3 2 2 2 2
Fair 3 3 0 5 1 10 6 11 10 10 0 15 5 9 10 11 11 10 10
Good 34 12 45 33 42 29 31 24 27 27 49 25 35 33 22 25 18 23 23
Very good 6 2 2 4 0 2 6 8 6 6 0 9 7 0 12 6 14 10 10
Predictior¥ (%) 653 327 499 551 499 673 653 735 714 878 469 673 612 653 93.9 87.8 838 100

& Qver-training was prevented by using 80% data for training and 20% for testing; fitting was repeated 5 times partitioning randomly the data sets and the
obtained prediction deviation wals4%.

b Best ANN model has a topology 11-22-10-5 followingraltiple training method, as implemented in Clementine™ software (relative weight of input:
$KX 0.51, $Clustering 0.50, $KY, 0.50, [CTMA] 0.03, [OH] 0.02, [TMA] 0.02 and [Ti] 0.02).

C 1t was employed only the titanium molar ratio as synthesis descriptor. Best ANN model has a topology 8-7-6-5 followitiglatraining method.

d Fitting done using a classification and regression algorithm (C&R).

€ Correct prediction of training and testing samples.

it failed in only a few samples when distinguishing between  This approach is exemplified in the modeling of the cat-
“good” and “very good” classes. alytic behavior of epoxidation catalyst based on mesoporous
On the other hand, ANN fitting with only synthesis Ti-silicate materials. The composition vector of the start-
data yielded models with moderate prediction performance ing synthesis gel and PXRD spectra were used as catalyst
(~ 45%). A better performance-(65%) was obtained when  descriptors, whereas the epoxide yield obtained by catalyst
spectral descriptors, that is, PCA and Kohonen and cluster-testing was used as the outcome of the model. Dimensional
ing, were used. The ANN prediction performance is again reduction was conducted with the use of principal compo-
significantly improved by a combination of synthesis and nents analysis, clustering, and Kohonen networks, and com-
spectral descriptors; that is, it was possible to reach valueshinations thereof, permitting extraction of the desired spec-
of about 90%. The last modeling technique was classifica- tral descriptors from the XRD characterization data. Subse-
tion decision trees, with which it is feasible to obtain high quently, predictive models (QSPR) were obtained with the
prediction performances of about 100% with combined de- use of logistic equations, artificial neural networks, and de-
scriptors, improving that obtained with synthesis data alone cision tree modeling techniques. The use of spectral descrip-
(90%). The benefit of decision trees is that they make it tors made it possible to markedly improve the prediction
possible to extract legible rules and conditions from the ex- performance over that obtained with synthesis descriptors
perimental data. alone. Moreover, reactor operating conditions could also be
included as model inpuy#3], permitting prediction of the
catalyst performance under a wide range of process condi-
5. Conclusions tions.
HT characterization permits the incorporation of infor-
A novel approach integrating HT characterization in com- mation about the final solid material, that is, coordination of
binatorial heterogeneous catalysis has been proposed thathe elements, types of crystalline structures making up the
describes how spectral characterization descriptors can besolid, etc. This complex final state includes the presence of
used in combination with synthesis descriptors for the unsu- metastable structures or coordination of specific elements,
pervised construction of QSPR models. This makes it pos- whose a priori prediction is very difficult to make, when only
sible to increase the prediction capability by introducing in- the catalyst composition and tabulated data are considered.
formation about theeal catalyst. Furthermore, characteriza- However, these specific catalyst properties do have a para-
tion descriptors could be complemented with other catalyst mount influence on the catalytic behavior of the material.
descriptors, namely those based on tabulated and ab initio This approach can be of special interest when the experi-
computed dat§2,13]. mental evaluation of the catalytic behavior is very expensive
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or time-consuming, as, for instance, for catalyst deactivation [16] R.H. Hoogenboom, M.A.R. Meier, U.S. Schubert, Macromol. Rapid

studies, testing under very severe conditions, or when high

It should be taken into i ; L
r{18] E. Schneiderman, D. Stanton, T. Trinh, W.D. Laidig, M.L. Kramer,

amounts of catalyst are demanded.
account that, even though unsupervised QSPR constructio
is done, the intervention of a scientist to identify the ad-

Commun. 24 (2003) 15.
[17] N. Adams, U.S. Schubert, J. Comb. Chem. 6 (2004) 12.

E.P. Gosselink, World Patent Application WO02/44686 A2, 2002.
[19] C. Vazquez, S. Boeykens, H. Bonadeo, Talanta 57 (2002) 1113.

equate (inexpensive) characterization technique and adjus{20] R.A. Potyrailo, R.J. Wroczynski, J.P. Lemmon, W.P. Flanagan, O.P.

the experimental and calculation procedures would always

be required.
We envisage that future work in HT catalyst develop-

Siclovan, J. Comb. Chem. 5 (2003) 8.

[21] A. Tuchbreiter, J. Marquardt, J. Zimmermann, P. Walter, R. Muel-
haupt, B. Kappler, D. Faller, T. Rohts, J. Honnerkaup, J. Comb.
Chem. 3 (6) (2001) 598.

ment will apply the approach proposed here, complementing [22] J. Kiein, C.W. Lehmann, H.W. Schmidt, W.F. Maier, Angew. Chem.

the state-of-the-art techniqufs3,31] The resulting QSPR
models can be used tirtually screen the untested catalysts,
providing information useful for guiding the next round of
experimentation (reactivity testing). For further implemen-

tation of this approach, it would be necessary to increase

Int. Ed. 37 (1998) 3369.

[23] H. Wang, Z. Liu, J. Shen, H. Liu, Catal. Commun. 5 (2004) 55.

[24] O.M. Busch, W. Brijoux, S. Thomson, F. Schuth, J. Catal. 222 (2004)
174.

[25] A.C. van Veen, D. Farrusseng, M. Rebeilleau, T. Decamp, A. Holz-
warth, Y. Schuurman, C. Mirodatos, J. Catal. 216 (2003) 135.

the diversity of the mapped catalyst space and apply other[26] P. Atienzar, A. Corma, H. Garcia, J.M. Serra, Chem. Eur. J. 10 (2004)

spectroscopic techniques, with the intention of incorporat-
ing information about the coordination state of the element

dispersed over the catalyst surface, that is, UV~visible, Ra-

man, and photoluminescence spectroscopy.
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