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Abstract

This paper presents a novel approach in the framework of heterogeneous combinatorial catalysis, which integrates into the globa
strategy the use of inexpensive high-throughput characterization of libraries of catalysts, as multivariate spectral descriptors fo
quantitative structure/property relationship (QSPR) modeling. Moreover, QSPR models can be used to assist the design of new li
for extraction of rules and relationships, yielding knowledge about catalysis. This approach can be of special interest when exp
evaluation of catalytic behavior is very expensive or time-consuming, as, for instance, for catalyst deactivation studies, for test
very severe conditions, or when high amounts of catalyst are demanded. This methodology has been applied to modeling of the b
epoxidation catalysts, with the composition vector of the starting synthesis gel and XRD spectra as descriptors. Dimensional red
conducted by principal components analysis, clustering, and Kohonen networks, and predictive models were obtained with the use
equations, artificial neural networks, and decision tree techniques. The use of spectral descriptors made it possible to markedly i
prediction performance obtained with synthesis descriptors alone.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the field of heterogeneous catalysis, new experim
tal tools are available for high-throughput (HT) materi
synthesis, catalytic testing, and physicochemical chara
ization. Such tools make it possible to study simultaneou
a large number of variables, like multicomponent cata
formulation, synthesis procedure, activation conditions,
Furthermore, HT experimentation or so-called combina
ial catalysis has become an accepted approach to new
alytic material discovery and development. This appro
requires the utilization of complex library design strateg
new data mining techniques, and database technology.
* Corresponding author. Fax: +34 96 387 7809.
E-mail address: acorma@itq.upv.es(A. Corma).
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HT experimentation in drug discovery and medical che
istry is a widely applied and mature approach from wh
combinatorial catalysis has taken and adapted most o
experimental and software tools. However, the proper
scription of solid extended catalysts and the ab initio ca
lation [1] of their properties are very complex and are stil
their infancy[2,3], especially when compared with the ava
able chemoinformatics software suites for virtual scre
ing of drug candidate molecules[4–6]. Molecular descrip-
tors used in the pharmaceutical chemistry are variables
represent the physiochemical properties of a class of c
pounds[7–9], and they are commonly classified into fo
types: (a) constitutional (molecular formula); (b) topologi
(molecule connectivity matrix); (c) geometrical (3D mole

ular models); and (d) quantum chemical properties: (semi-
empirical or ab initio calculations). In recent years[10–12],
a complete descriptor database has been developed for solid

http://www.elsevier.com/locate/jcat
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Fig. 1. General concept of QSP

catalysts based on molecular descriptors. Nevertheless
use of fundamental descriptors is very limited, since het
geneous catalysts are complex systems, with heterogen
multicomponent active sites and unpredictable metast
structures. In some cases, the tabulated information c
sponding to the starting elements/oxides making up the
alyst can be of help, as was interestingly shown[13,14] for
the catalytic oxidation of propylene with oxygen. The a
thors found that of the more than 3000 tabulated attrib
of the catalyst, just six of them could be correlated w
certain significance with the experimental performance
the final solid catalyst (e.g., the Pauling electronegati
of all of the metals and semimetals or the normalized
mation free enthalpy of the most stable metal oxide of
the elements in the catalyst). Predictive modeling was c
ducted with the use of neural networks and classifica
trees. Neural networks gave the best results, and the m
output corresponded to the class of catalytic behavior. H
ever, one should expect that tabulated properties would b
help only when an effect of one of the catalyst compone
is predominant.

Another interesting approach in the field of polym
science is fingerprint technology and high-output scre
ing [15]. In this case, the use of molecular descriptors
also very limited, since a final polymer does not posses
exact chemical formula or structure, and it is better cha
terized by its average properties, polymerization conditio
and ingredients. Novel fingerprint technology makes us
fast, nondestructive, and inexpensive spectroscopy mea
ments combined with data mining tools to reduce the n
for extensive and tedious polymer testing for rheolog
and long-term mechanical properties. Therefore, HT cha
terization of a well-defined model polymers library is us
for the rapid establishment of quantitative structure/prop
relationships (QSPRs) by multivariate analyses. Differ
characterization techniques[16–18] have been applied fo
fingerprint polymer and QSPR modeling, such as X-
fluorescence[19], fluorescence spectroscopy[20], and ATR-
FTIR spectroscopy[21], which allow for the rapid analysi
of powders and polymeric solids without the need for sam

preparation, whereas the data mining tools included princi-
pal component analysis, multivariate partial least squares, or
decision trees.
edictive models in catalysis science.

e

s

-

l

f

-

Up to now, in the field of heterogeneous catalysis o
the development of new HT techniques has been repo
no reports on data analysis and the ulterior integration in
whole combinatorial loop or global discovery strategy h
been published. The available HT characterization te
niques for solid catalysts include XRD systems[22], acidity
determination by TPD-NH3 [23] and IR-pyridine adsorp
tion [24], parallel TAP reactor studies[25], and photolumi-
nescence[26]. Conversely, data mining has been succe
fully applied in this field for the analysis and extraction
multifactor relationships (QSPR), with the use of differe
modeling techniques[13,27] like artificial neural networks
decision trees, principal components regression, etc.
extracted knowledge can subsequently be integrated in
brary design tools[28–31], making it possible to reduce th
experimental effort needed to reach a convergence crite

We propose here a novel approach in the framew
of heterogeneous combinatorial catalysis, which integr
into the global discovery strategy[32] the use of inexpen
sive HT characterization of libraries of catalysts, as mu
variate spectral descriptors for predictive modeling of
catalytic behavior. Indeed, spectral data can be used
gether with synthesis and theoretical data as input des
tors for catalytic QSPR modeling (Fig. 1). As summarized
in Fig. 2, spectral descriptors can be obtained automatic
by processing of the raw characterization data. The Q
model obtained by different data-mining techniques can
used (i) as a predictive model, assisting the DoE of n
catalyst libraries; and (ii) for extraction of rules and relatio
ships between the different variables, and gaining knowle
about catalysis.

As a proof of this principle, we have applied these c
cepts to a specific case, using experimental data obta
with HT tools, following an evolutionary strategy. First, d
ferent unsupervised methods for dimension reduction of
raw spectral HT characterization data, clustering algorith
principal component analysis and Kohonen neural netwo
are used to obtain a series of experimental spectral des
tors. Subsequently, the construction of predictive models

the catalytic activity with the use of synthesis and character-
ization descriptors is studied, by the application of different
modeling techniques. The influence of the dimensionality re-
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Fig. 2. Workflow of processing of characterization data and the furth
models and to extract fundamental knowledge.

duction approach on the final prediction performance wil
also examined.

2. Experimental

Experimental data were drawn from the HT optimizat
of epoxidation catalysts based on mesoporous titanium
icate materials[33]. In that work, the experimental desig
was determined by a hybrid optimizer comprising a gen
algorithm assisted by an ANN[30] and experimental dat
corresponding to the three evolved catalyst generations.
object was to determine the yield of cyclohexene epox
for optimal material synthesis parameters, that is, the m
concentrations of the components of starting gel. The di
bution of materials in the explored space is complex, beca
of the evolutionary design strategy applied.

Apart from the optimization process, HT characteri
tion was carried out to gain a fundamental understand
of the catalysis of the process. Therefore, X-ray diffract
analyses were available for most of the screened Ti-sili
materials (extracted and sylilated). Although the interpre
tion of these data for mesoporous materials is not obvi
low-angle XRD spectra (1–8 2θ ) give information abou
the long-distance order of the materials, that is, the typ
“crystallographic system,” dimensions of the pores, and
ticle size. Consequently, it is expected that XRD data co
be correlated with the final catalytic activity of the materi
Concretely, XRD measurements showed that from a cry
lographic point of view, three types of materials are occ
ring in the explored multivariate space, that is, MCM-41 a

MCM-48 with different degrees of structural order, and low-
ordered materials. X-ray powder measurements were per-
formed with a Philips X’Pert MPD diffractometer equipped
ning treatment together with synthesis and testing data, aiming to obPR

with a PW3050 goniometer, with the use of Cu-Kα radiation
and a multisample handler.

The experimental data employed here can therefor
divided into three groups: (i) compositional synthesis d
[TMA], [CTMA], [OH], and [Ti] concentrations; (ii) XRD
measurements; and (iii) catalytic performances, that
epoxide yield, which was classified into five classes, fr
“very bad” to “very good” yields.

3. Unsupervised analysis of XRD patterns:
dimensionality reduction

XRD characterization data consist of arrays of more t
230 data, which could hardly be processed by correla
methods when they were used directly as input variables
predictive modeling (QSPR). For this reason and for red
tion of experimental noise, a previous dimension reduc
of the abundant raw data is required. In the present c
XRD data are analyzed and projected to a discrete numb
dimensions (from 1D, 2D to 5D) with different data-minin
techniques: (i) clustering analysis usingK-means and two
step algorithms; (ii) principal component analysis (PC
and (iii) Kohonen neural networks. Furthermore, these d
would be used as multivariate spectral descriptors for
alytic activity modeling.

In the present approach, instead of applying direct
man interpretation of the XRD spectral data, we deci
to employ unsupervised analysis techniques because o
convenience of automating the processing of high amo
of data and in order to avoid the subjectivity introduced
human interpretation.
PCA is a widely applied statistical methodology[34] that
allows the dimensionality of information space to be reduced
with a minimum loss of information. This method is based
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Fig. 3. PXRD measurement data of epoxidation catalysts o

on the fact that input variables (raw descriptors) are clo
correlated; then it is possible to find a set of new uncorrela
variables (descriptors calledprincipal components). There-
fore, principal components are essentially a linear comb
tion of the original descriptors. On the other hand, clus
ing [35] can be considered the most important unsuperv
learning methods, which find a structure in a collection
unlabeled data by organizing them into groups orclusters
according to their similarity. Finally, the objective of a K
honen network[36–38]is to map input vectors (patterns)
arbitrary dimensionN onto a discrete map with one or tw
dimensions. Samples close to one another in the input s
should be close to one another in the map Kohonen (to
logically order). A Kohonen network is composed of a g
of output units andN input units. The input pattern is fed t
each output unit.

Fig. 3 shows the complete spectral data ordered acc
ing to which of the different clusters generated by a two-s
clustering algorithm they belong to. The five clusters fou
can be somewhat correlated with knowledge-based obs
tions; that is, the clusters correspond to low-ordered MC
41, medium-ordered MCM-41, MCM-48, and high-order
MCM-41.Fig. 4shows the cluster distribution obtained w
K-means and two-step clustering algorithms, when the p
cipal components obtained by PCA computation and
Kohonen map (10× 7) are plotted as coordinates. Clust
ing analyses were performed with these two clustering
gorithms, with a minimum of 5 and 10 clusters. The res
show that apparently the clusters found by the two-step lo

rithm are clearly separated from each other, when displayed
with the PCA projection, and the most appropriate number
of clusters is 5. Furthermore,Figs. 4c–d presents the map-
d considering the cluster distribution obtained by Two-Step algorithm.

e

-

ping, obtained by Kohonen network training, of the samp
classified according to the cluster distribution obtained
the two-step algorithm. As for the PCA projection, it c
also be observed that clusters found with the two-step a
rithm are clearly recognizable within the Kohonen mapp
(2D projection).

These unsupervised techniques can successfully org
and classify the spectral XRD dataset, reducing the dat
mensionality of the redundant raw data. The next step
study the suitability of these multivariate spectral descrip
for predictive modeling, used alone or in combination w
synthesis descriptors.

4. Construction of predictive models with the use of
synthesis and multivariate spectral descriptors

Data-mining techniques make it possible to discover h
den patterns or relationships among large amounts of
with multidimensional structure[39,40]. On the basis of this
knowledge extracted from experimental or ab initio co
puted descriptors, data-mining techniques have made it
sible to construct predictive models (QSPR)[27,29] in the
field of heterogeneous catalysis. Among the different m
eling techniques, we can draw attention to decision t
(DT) [41], logistic regression equations (LRE)[42], artifi-
cial neural networks (ANN)[43], the support vector machin
(SVM) algorithm[44], and principal component regressi
(PCR)[45]. In this section, we attempt to develop a pred

tive model that relates the catalytic behavior of solid samples
to synthesis descriptors and/or (structural) XRD spectral de-
scriptors. This model will provide a basis for developing a
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Fig. 4.K-Means and Two-Step clustering analysis represented in the PCA projection (a, b) and in the Kohonen map (c, d) obtained for the classification of
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63 catalysts. The corresponding percentage of variance for each princ
network comprising 234 input neurons and 70 output neurons and usin

QSPR, which can be used in discovery programs when H
or combinatorial techniques are applied.

The influence of the different descriptors on predict
performance was studied with logistic equations as
model, whereas ANN and DT fitting will be done with th
most appropriate descriptors.Table 1summarizes the mod
eling results obtained with different catalyst descriptors
modeling techniques. When only the four synthesis v
ables were used as catalyst descriptors, the LRE fitted m
showed a prediction accuracy of 65%. Interestingly, w
only spectral descriptors obtained by PCA were used,
LRE prediction accuracy computed with two and five pr
cipal components was 50 and 55%, respectively. Altho
there is no direct information concerning elemental com
sition or the synthesis procedure, the structural informa
contained in XRD data permits some correlation of the
alytic activity. When only the Kohonen projections are us
as descriptors, the accuracy of the fitted LRE model is 5
but this value is increased (67%) when Kohonen and t

step clustering data are combined as descriptors. To check
the convenience of the XRD data dimension reduction, the
component (PC#) is 67.4, 12.7, 6.0, 5.4 and 2.4%. Kohonen map calcth a
ponential learning rate decay.

l

LRE model was fitted, with the 263 original attributes us
as input variables, yielding a poor accuracy (32%).

The combination of synthesis and spectral descriptor
first studied by LRE modeling with the spectral princip
components (2 and 5) and the four compositional desc
tors. The model accuracy is higher (73 and 65%) than
obtained with both descriptors sets separately, illustra
the complementarity of the two data sets. Moreover, the
troduction of characterization information would also ma
it possible to correct the experimental deviations introdu
during the synthesis process. Although structural prope
and synthesis descriptors are correlated, the use of s
tral descriptors improves the modeling of highly nonline
spaces. Furthermore, since only a few spectral descrip
are applied, such correlation between the two types of
scriptor should not have any negative effect on the mode
process. Conversely, the accuracy is also increased (7
when synthesis and Kohonen descriptors are used, and
significantly increased (88%) when the information of tw

step clustering is added. This model makes it possible to
correctly predict the outcome of most of the samples, and
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Table 1
Modeling results obtained using synthesis and characterization data as catalyst descriptors, processed by PCA, Kohonen networks and Two-Sttering
algorithm. The fitted models were logistic regression equations, artificial neural networks and decision trees. All modeling calculations were carried out using
ClementineTM 6.0.2 application (SPSS Inc.)
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Synthesis descriptors Nr. 4 0 0 0 0 0 4 4 4 4 4 0 0 0 4b 1c 4 4
Catalyst descriptors Nr. 4 234 4 5 2 3 6 9 6 7 4 5 2 3 7 4 4 7

Very bad 4 10 2 5 3 4 4 4 4 4 0 0 2 7 2 5 4 4
Bad 2 2 2 2 3 4 2 2 2 2 0 0 0 0 3 2 2 2
Fair 3 3 0 5 1 10 6 11 10 10 0 15 5 9 10 11 11 10 1
Good 34 12 45 33 42 29 31 24 27 27 49 25 35 33 22 25 18 23
Very good 6 22 2 4 0 2 6 8 6 6 0 9 7 0 12 6 14 10 1

Predictione (%) 65.3 32.7 49.9 55.1 49.9 67.3 65.3 73.5 71.4 87.8 46.9 67.3 61.2 65.3 93.9 87.8 89.8 100

a Over-training was prevented by using 80% data for training and 20% for testing; fitting was repeated 5 times partitioning randomly the data s
obtained prediction deviation was±4%.

b Best ANN model has a topology 11-22-10-5 following amultiple training method, as implemented in Clementine™ software (relative weight of in
$KX 0.51, $Clustering 0.50, $KY, 0.50, [CTMA] 0.03, [OH] 0.02, [TMA] 0.02 and [Ti] 0.02).
c It was employed only the titanium molar ratio as synthesis descriptor. Best ANN model has a topology 8-7-6-5 following amultiple training method.
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d Fitting done using a classification and regression algorithm (C&R).
e Correct prediction of training and testing samples.

it failed in only a few samples when distinguishing betwe
“good” and “very good” classes.

On the other hand, ANN fitting with only synthes
data yielded models with moderate prediction performa
(∼ 45%). A better performance (> 65%) was obtained whe
spectral descriptors, that is, PCA and Kohonen and clu
ing, were used. The ANN prediction performance is ag
significantly improved by a combination of synthesis a
spectral descriptors; that is, it was possible to reach va
of about 90%. The last modeling technique was classifi
tion decision trees, with which it is feasible to obtain hi
prediction performances of about 100% with combined
scriptors, improving that obtained with synthesis data al
(90%). The benefit of decision trees is that they mak
possible to extract legible rules and conditions from the
perimental data.

5. Conclusions

A novel approach integrating HT characterization in co
binatorial heterogeneous catalysis has been proposed
describes how spectral characterization descriptors ca
used in combination with synthesis descriptors for the un
pervised construction of QSPR models. This makes it p
sible to increase the prediction capability by introducing
formation about thereal catalyst. Furthermore, characteriz

tion descriptors could be complemented with other catalyst
descriptors, namely those based on tabulated and ab initio
computed data[2,13].
t

This approach is exemplified in the modeling of the c
alytic behavior of epoxidation catalyst based on mesopo
Ti-silicate materials. The composition vector of the sta
ing synthesis gel and PXRD spectra were used as cat
descriptors, whereas the epoxide yield obtained by cat
testing was used as the outcome of the model. Dimens
reduction was conducted with the use of principal com
nents analysis, clustering, and Kohonen networks, and c
binations thereof, permitting extraction of the desired sp
tral descriptors from the XRD characterization data. Sub
quently, predictive models (QSPR) were obtained with
use of logistic equations, artificial neural networks, and
cision tree modeling techniques. The use of spectral des
tors made it possible to markedly improve the predict
performance over that obtained with synthesis descrip
alone. Moreover, reactor operating conditions could also
included as model input[43], permitting prediction of the
catalyst performance under a wide range of process co
tions.

HT characterization permits the incorporation of info
mation about the final solid material, that is, coordination
the elements, types of crystalline structures making up
solid, etc. This complex final state includes the presenc
metastable structures or coordination of specific eleme
whose a priori prediction is very difficult to make, when on
the catalyst composition and tabulated data are consid
However, these specific catalyst properties do have a p

mount influence on the catalytic behavior of the material.

This approach can be of special interest when the experi-
mental evaluation of the catalytic behavior is very expensive
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or time-consuming, as, for instance, for catalyst deactiva
studies, testing under very severe conditions, or when
amounts of catalyst are demanded. It should be taken
account that, even though unsupervised QSPR constru
is done, the intervention of a scientist to identify the a
equate (inexpensive) characterization technique and a
the experimental and calculation procedures would alw
be required.

We envisage that future work in HT catalyst develo
ment will apply the approach proposed here, complemen
the state-of-the-art techniques[13,31]. The resulting QSPR
models can be used tovirtually screen the untested catalyst
providing information useful for guiding the next round
experimentation (reactivity testing). For further impleme
tation of this approach, it would be necessary to incre
the diversity of the mapped catalyst space and apply o
spectroscopic techniques, with the intention of incorpo
ing information about the coordination state of the eleme
dispersed over the catalyst surface, that is, UV–visible,
man, and photoluminescence spectroscopy.
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